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ABSTRACT
Personalized learning environments requiring the elicitation
of a student’s knowledge state have inspired researchers to
propose distinct models to understand that knowledge state.
Recently, the spotlight has shone on comparisons between
traditional, interpretable models such as Bayesian Knowl-
edge Tracing (BKT) and complex, opaque neural network
models such as Deep Knowledge Tracing (DKT). Although
DKT appears to be a powerful predictive model, little ef-
fort has been expended to dissect the source of its strength.
We begin with the observation that DKT differs from BKT
along three dimensions: (1) DKT is a neural network with
many free parameters, whereas BKT is a probabilistic model
with few free parameters; (2) a single instance of DKT is
used to model all skills in a domain, whereas a separate
instance of BKT is constructed for each skill; and (3) the in-
put to DKT interlaces practice from multiple skills, whereas
the input to BKT is separated by skill. We tease apart these
three dimensions by constructing versions of DKT which are
trained on single skills and which are trained on sequences
separated by skill. Exploration of three data sets reveals
that dimensions (1) and (3) are critical; dimension (2) is
not. Our investigation gives us insight into the structural
regularities in the data that DKT is able to exploit but that
BKT cannot.

Keywords
Personalized learning, Online education, Knowledge tracing,
Deep learning, Sequential modeling

1. INTRODUCTION

∗Denotes equal contribution by authors

The optimization of the human learning is a recurring topic
in educational research. Traditional human instructors mon-
itor and assess a student’s knowledge and adapt instruc-
tional activities to help the student achieve her goals. As-
suming the knowledge in a domain has been decomposed
in a hierarchy of skills, the sequence of learning activities
becomes a scaffold for the learning process, helping the stu-
dent to acquire prerequisite skills before moving to more
complex skills in the hierarchy [1]. Therefore, in tailor-
ing the sequence to the needs of the student it is essential
to track, assess, and predict the student’s changing knowl-
edge state, thereby personalizing the design. In reality, with
limited educational resources a standardized lesson design
is more the norm than the exception. Nevertheless, au-
tomated tutoring/self-study designs have presented an in-
teresting attempt to personalize learning, and offer a more
budget-friendly option in the long term. To be effective, au-
tomated tutoring systems should model the student’s knowl-
edge state, known as knowledge tracing [3], substituting the
cues that a human instructor would use to assess the student
with the student’s performance along the sequence of forma-
tive and summative learning activities. However, knowledge
tracing and the evaluation of the personalized learning en-
vironments remain a complex endeavor and the focus of in-
terest for applied machine learning research.

1.1 Knowledge Tracing
A knowledge-tracing model tracks a student’s evolving knowl-
edge state as the student practices a sequence of problems
[3]. The knowledge state is decomposed into a set of do-
main skills required to solve the specific problems that the
student is attempting. Each problem is labeled with the
corresponding skill required for that problem. The criti-
cal data to be modeled thus consist of a sequence of pairs,
Dq = {. . . (Xqt, Yqt) . . .}, where Xqt is a categorical random
variable indicating the specific skill required to be able to
solve the problem presented to student q on trial t, and Yqt

is a binary random variable denoting the outcome of the
trial, with Yqt ∈ {correct , error}. Of course, most modern
data sets have far richer information—the use of supporting
materials or hints, response latencies, time between trials,
number of attempts, the specific problems being attempted,
etc. For the present research, we are not considering these
additional sources of data.



In Bayesian knowledge tracing (BKT), the data are parti-
tioned by skill, leading to a skill specific dataset,

Dqs = {(Xqt, Yqt)|Xqt = s}

in which the trial sequence is re-indexed for each skill s.
BKT is a hidden Markov model that performs inference to
determine a latent binary skill variable Kqst, denoting the
knowledge state of student q on skill s at the start of trial
t. The model for skill s has 4 parameters [5], θs, with the
following interpretations in terms of the model:

θs ={P (Kqs0) = 1, P (Yqt = 1|Kqst = 0),

1− P (Yqt = 0|Kqst = 1), P (Kqst = 1|Kq,s,t−1 = 0}.

In this form the model assumes no forgetting, i.e., the knowl-
edge state K cannot transition from 1 to 0. Note that each
skill is treated independently; cross-skill interactions are not
modeled.

DKT [5, 7] is a recurrent neural network whose input layer
is a representation of the previous trial, (Xq,t−1, Yq,t−1) and
whose output layer is a prediction, for every possible skill,
of whether the student would answer problems of that skill
correctly, i.e., ∀s, P (Yq,t|Xq,t = s).1 Internally, DKT has a
layer of recurrent hidden units that, through training, learn
to hold the student’s knowledge state in order to make pre-
dictions. Typically, the hidden layer contains LSTM units,
often used to handle sequence processing tasks because of
their ability to maintain state over time.

As originally implemented, DKT makes three assumptions
that distinguish it from BKT:

1. All skills are interleaved in a single sequence over time,
and predictions are made for each trial in the sequence.
In contrast, BKT assumes that skills are presented in
separate sequences. We will refer to this distinction
as combined sequence (CS) versus separate sequences
(SS).

2. All skills are learned by a single model that combines
information across skills. In contrast, BKT assumes
that a separate model is trained on each skill, and thus
the parameters for different skills do not interact. We
refer to this distinction as combined model (CM) versus
separate models (SM).

3. DKT is of course based on a neural network, whereas
BKT is a probabilistic model. The neural network
has far greater flexibility. For example, BKT assumes
that once a student learns they stay in the ‘knowing’
state. In contrast, DKT can model forgetting. To
illustrate another difference, DKT can in principle re-
member the last n trials and condition its prediction
on this complex state representation, whereas BKT is

1The inputs and outputs of DKT can be representations of
either skills or problems. For example, DKT could represent
4+3 and 7+2 as two distinct problems or it could represent
them as the skill single-digit addition. Because BKT oper-
ates with the level of representation being skills and we wish
to compare DKT to BKT, our implementation of DKT does
the same: its representation of the current trial is a skill
index and the correctness of the response; its representation
of the output is one prediction per skill index.

Markovian—it embodies the input history in a single
binary state variable.

Assumption 1 is conditioned on assumptions 2 and 3; as-
sumption 2 is conditioned on assumption 3. Our goal is to
tease apart these assumptions and examine them individu-
ally, allowing us to determine which assumptions are most
responsible for the improvements in performance that DKT
achieves over BKT. In addition to the standard form of BKT
and DKT, we introduce two new variants of DKT: one that
drops assumption 1, and one that drops assumptions 1 and
2. For the sake of understanding the relationship among
the four models, we relabel the standard forms of BKT and
DKT, obtaining the following progression of models:

• DKT-CM-CS: The standard form of DKT, which is
a single neural network that learns all skills (the com-
bined model or CM) and its input sequence consists
of the interlaced sequence of trials across all skills (the
combined sequence or CS). This model incorporates
assumptions 1-3.

• DKT-CM-SS: DKT minus assumption 1. This vari-
ant is trained on a separate sequence for each skill. A
single model is still used to predict for all skills (the
combined model or CM) but the input is separated by
skill (the separate sequences or SS).

• DKT-SM-SS: DKT minus assumptions 1 and 2. This
variant trains a different model for each skill (separate
models or SM) and because each skill is fed into a dif-
ferent model, it is necessary to separate the sequences
by skill (SS).

• BKT-SM-SS: The standard form of BKT. We aug-
ment the name with SM to remind the reader that
a separate instantiation of the model is constructed
for each skill, and with SS to indicate that sequences
are separated by skill and fed into the correspond-
ing model. This model drops all three assumptions
of DKT.

Pairwise comparisons among models allow us to examine in-
dividual assumptions: DKT-CM-CS and DKT-CM-SS differ
only in assumption 1; DKT-CM-SS and DKT-SM-SS differ
only in assumption 2; and DKT-SM-SS and BKT-SM-SS
differ only in assumption 3. By examining the performance
differences between each pair, we can determine the value of
each assumption.

1.2 Related Work
Recent studies compare traditional models such as Bayesian
Knowledge Tracing (BKT) and its variants against complex
neural network models such as Deep Knowledge Tracing
(DKT) [4, 5, 6, 7, 8, 10, 11, 12]. The basic BKT (or BKT-
SM-SS) is at a distinct disadvantage relative to the standard
DKT (or DKT-CM-CS) when it comes to exploiting inter-
skill similarities, integrating recency effects, contextualizing
trials and representing variations on the student’s abilities.
Therefore, DKT on balance outperforms basic BKT. Efforts
have been made to show that when additional machinery is
added to BKT, it rises in performance to a comparable level





For initializing weights in all the DKT methods, we used
random uniform weights in the range [−.05,+.05]. All DKT
models had a single hidden layer. DKT-SM-SS used 10
LSTM units for all datasets. For DKT-CM-SS and DKT-
CM-CS, we used one hidden layer with 50 LSTM units for
the Woot Math dataset and 200 LSTM units for the other
two datasets, due to the fact that they contain more skills.
Additionally, for all DKT models, we used drop-out on the
hidden layer with keep probability of 0.6.

Rather than run BKT on ASSISTments and KDD, we report
the results from Xiong et al. [11]. Our own implementation
of BKT was used to obtain performance estimates for the
Woot Math data.

3. RESULTS
We estimate the discriminative performance of each model—
its ability to predict when a student will answer correctly or
incorrectly—using the signal detection AUC (area under the
curve) measure. There are a two methods by which AUC
can be computed. One method, within-skill AUC, involves
separating the test data for all students by skill and com-
puting an AUC value for each skill and then computing the
mean across skills. The other method, between-skill AUC,
involves combining data from all students and all skills and
computing a single AUC score. In general, the between-skill
AUC is larger than the within-skill AUC for two reasons.
First, it incorporates the degree to which models are success-
ful at predicting relative performance among skills. Second,
the between-skill AUC weighs all trials equally, whereas the
within-skill AUC de-emphasizes skills with many trials. In
our work, we compute between-skill AUC, both because it is
sensitive to aspects of the data we care about and it matches
the methodology used by Xiong et al. [11].

Table 1 shows a summary of results for the three data sets
(rows of the table) and the four models (columns 4-7 of the
table). From left to right, BKT-SM-SS is the basic BKT
model, for which a separate model is trained per skill and
the sequences are separated by skill. DKT-SM-SS is an
implementation of DKT in which a separate model is con-
structed for each skill and the sequences are separated by
skill; this procedure is analogous to the manner in which
BKT is trained, except the model is a neural network in-
stead. DKT-CM-SS involves a single combined model trained
on all skills, but the sequences fed to the model are separated
by skill. Finally, DKT-CM-CS is the standard implementa-
tion of DKT in which a combined model is trained on all
skills and the input sequences combine skills to obtain an
interleaved trial history.

3.1 Interleaved- vs. blocked-skill sequences
DKT-CM-CS and DKT-CM-SS differ only in the manner in
which the student sequences are parsed. The combined se-
quences interleave various skills; the separate sequences are
blocked or filtered by skill. For example, 1-3-3-2-2-1-1-2-3
is an interleaved sequence, and {1-1-1, 3-3-3, 2-2-2} are the
set of blocked sequences. In both cases, the sequence or-
der corresponds to temporal order of the trials. Our results
show a win for DKT-CM-CS for ASSISTments and KDD. In
these cases, DKT is able to leverage the interaction among
skills. One likely form of interaction that the model exploits
is the fact that strong students perform well on all skills,

weak students perform more poorly on all skills. Conse-
quently, there should be an inter-skill correlation for a given
student. To elaborate, consider the sequence of trials with
two skills, 1-1-1-2-2-2. If the student performs extraordinar-
ily well on the 1-1-1 sequence, this observation should be
predictive of better-than-average performance on 2-2-2. We
suspect that adding IRT-like student ability parameters to
DKT might eliminate the difference between the combined-
and separate-sequence versions of DKT.

For the Woot Math data set, there was no benefit to com-
bining. We hypothesize that the reason for this finding is
that there are only 10 skills, and the breakdown by skill
is fairly coarse. Because the skills have little in common,
there is less likely to be transfer from one skill to another,
and therefore predicting performance on one skill would not
benefit from knowing performance on another skill. (Simi-
larly, you wouldn’t expect, say, someone’s driving ability to
predict their juggling ability.)

3.2 Combined-skill vs. separated-skill models
Both DKT-CM-SS and DKT-SM-SS are trained on sequences
blocked by skill. They differ in that DKT-CM-SS is trained
on all skills at once. Thus its parameters are shared across
skills. In contrast, a separate instance of DKT-SM-SS is
trained for each skill. Thus, its parameters are not shared
across skills. In both cases, AUCs are computed by pool-
ing data across skills and computing a single AUC—the
between-skill AUC we referred to earlier.

We do not observe a significant difference in performance
between DKT-CM-SS and DKT-SM-SS. On KDD they per-
form almost identically. On ASSISTments, DKT-SM-SS
does slightly better. And on Woot Math, DKT-CM-SS does
slightly better. In principle, training a combined model on
all skills will be beneficial if different skills are learned in a
similar fashion, i.e., if the time course of learning skill s1 is
related to the time course of learning skill s2. When there
is similarity across skills, there can be inter-skill transfer
in modeling the temporal dynamics of learning. However,
the benefit of this transfer should diminish as data sets get
larger. With a large enough data set for skill s1, the weak
inductive bias of s2 provides little benefit. We suspect that
the reason for observing no benefit by training a single model
on all skills is that our data sets are relatively large. It is
possible on much smaller data sets, we would observe a ben-
efit of using data from skill s1 to constrain predictions on
skill s2.

3.3 Neural network vs probabilistic model
DKT-SM-SS and BKT-SM-SS are trained in exactly the
same way: each model has distinct parameters for each skill,
and data from one skill is not used to inform performance
on other skills. The models differ in that DKT-SM-SS is an
intrinsically flexible neural network with hundreds of param-
eters, whereas BKT-SM-SS has 4 parameters. By restricting
our neural network to model only single skills we are taking
out of the equation the possibility of exploiting inter-skill
similarities, leveling the playing field for the more restricted
BKT model. Nonetheless, the results indicate better perfor-
mance of the neural net than the probabilistic model on all
three data sets. This is consistent with the neural net being
more flexible in characterizing the time course of learning.



Table 1: Test set performance (AUC) for four models. Standard deviations (N =5) are in parenthesis.
Dataset # Students # Skills BKT-SM-SS DKT-SM-SS DKT-CM-SS DKT-CM-CS

ASSISTments 09-10(b) 4217 124 0.630 0.733 (0.0003) 0.726 (0.0008) 0.809 (0.0021)
KDD 574 100 0.620 0.771 (0.0003) 0.764 (0.0013) 0.818 (0.0025)

Woot Math 11659 10 0.727 0.745 (0.0007) 0.760 (0.0005) 0.745 (0.0032)

BKT-SM-SS embodies a strongly restricted model of learn-
ing. For example, BKT-SM-SS assumes that the probability
of learning on trial t1 is identical to the probability of learn-
ing on t2, for any t1 and t2. In contrast, DKT-SM-SS might
discover that if a student does not learn early on, they are
not likely to learn later on.

4. CONCLUSIONS
Our goal in this research is to understand the factors that
contribute to the strong performance of DKT. We explored
three factors that differentiate DKT and BKT, and we devel-
oped a continuum of 4 models which, when paired, allowed
us to evaluate one factor at a time. Our three key findings
are as follows. First, DKT benefits from being presented
with a sequence of interleaved skills. We hypothesize that
this benefit is due to being able to estimate strength of a stu-
dent based on their performance on one skill and then use
this estimate to predict performance on another skill. Sec-
ond, DKT does not benefit per se by learning about multiple
skills at once versus learning about a single skill. We specu-
late that the reason for this finding is that we have relatively
large data sets, and the inductive bias provided by one skill
offers little leverage in modeling other skills. Third, DKT
shows a large benefit by being a flexible model that does
not incorporate a strong theory of human learning, as does
BKT. This is perhaps our most significant finding, as it sug-
gests that the simple all-or-none learning-without-forgetting
theory that BKT posits is too simplistic.
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